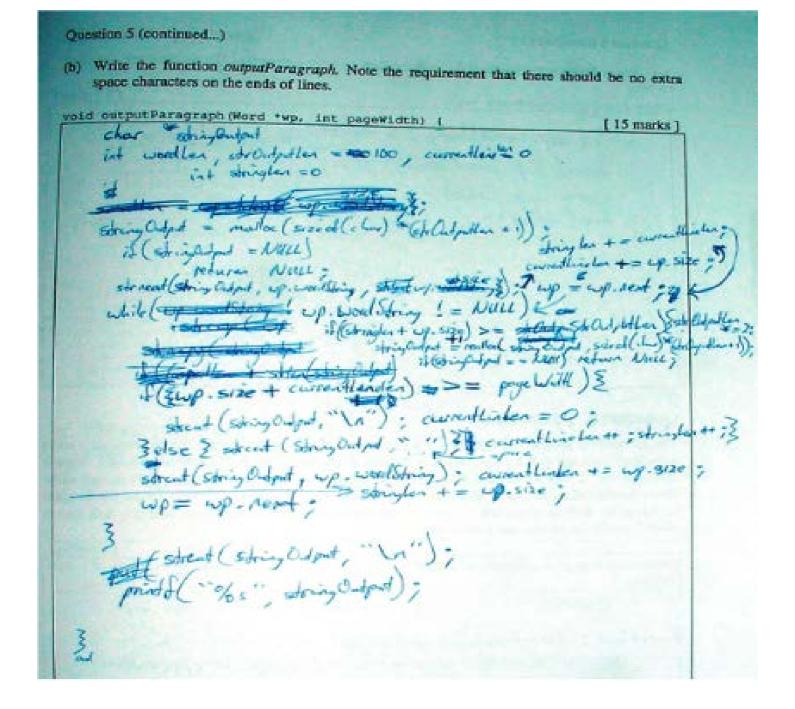


CADGME 2016

Learning and teaching programming and numerical methods with a system for automatic assessment

Gregor Jerše
Faculty of Computer and Information Science
University of Ljubljana


Matija Lokar Faculty of Mathematics and Physics University of Ljubljana

Situation

- Numerical methods class
- Primary form of work are lab exercises
- •Students have to solve a significant amount of examples
- •Students have already completed programming course
- •Use their programming skills: solve lots of programming exercises connected with numerical methods

Situation

- •Teachers have to prepare lots of numerical methods oriented exercises
- •Students' attempts to solve them have to be supervised
- Swift teacher feedback is desired
- •Teacher should have insight into students' solutions
- •Problems:
 - -teacher feedback can be slow, not always available
 - -Requires lots of additional work from the teacher

Solution

- •Solutions have to be in a form of a computer program
 - -Programs are readable by the computer
 - -Can be automatically assessed

•We developed a service for automatic assessment (SAAPE).

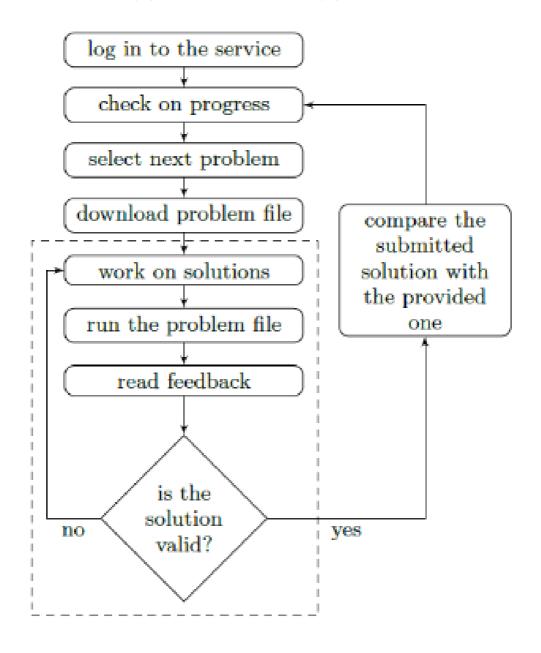
•SAAPE: Systems for automatic assessment of programming exercises

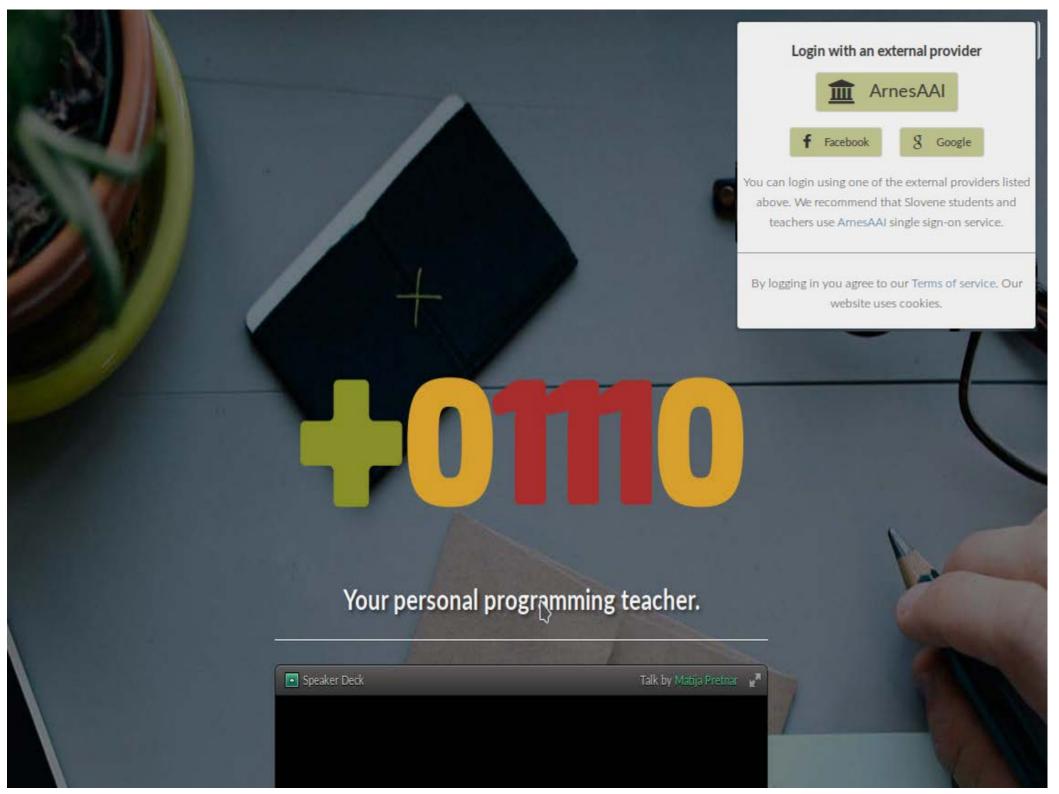
Requirements

- Easy to use
- •Requires little or no additional work from teacher and student
- Provides good and swift feedback to the students
- Stores history of their solutions
- Introduces no new programming environment
- Web based

Why yet another SAAPE?

- •Existing solutions did not suit our requirements
- •Usually SAAPE requires use of external server
 - -Server has to be powerful, expensive
 - -Requires students to upload their solutions, time consuming
 - -Security issues with executing unknown code
 - -Prone to DOS attacks...


Why YASAAPE?


- •Some run locally on the computer
 - -Usually they run inside web browser
 - -Instant feedback is given
 - -They eliminate security issues
 - -Not available when offline
 - -Tied to Javascript or languages simulated by Javascript
 - -Usually no insight into students' solutions

SAAPE Tomo

- Local execution (low overhead interaction)
- Instant feedback
- •IDE agnostic
- •Language agnostic: currently supports Python3 and Octave
- •Flexibility in writing tests
- •Entire students solution history is stored on the server
- Teacher has insight into students' solutions
- Works offline http://www.projekt-tomo.si

Tomo workflow - student

Tomo: students perspecitve

- •Multiple courses are available
- •Each course is divided into problem sets
- •Each problem set contains several exercises

+01110

CADGME 2016

0% Simple problems

20% Workshop

0% Excercise 14

Drugi koraki v Python

公

Matija Lokar, UROŠ VAUPOTIČ

@{Fakulteta za matematiko in fiziko}

CADGME 2016

0% Excercise 14

20% Workshop

0% Simple problems

Gregor Jerse

Matija Lokar

Matija Lokar

Fakulteta za matematiko in fiziko

CADGME 2016 conference examples

Workshop

Problem set for ISSEP Workshop

Download this problem file

1. part

Body mass index

BMI or body mass index is a number that helps us to roughly estimate the nutritional status of human adults. If m is a person's weight in kilograms and h his height in meters, we calculate the BMI as follows: $ITM = \frac{m}{h^2}$.

A person's weight, measured in kilograms, is written in the variable mass. A person's height, measured in centimeters, is written in the variable height. Write a program that computes BMI and tells you what is your nutritional status. The computed BMI should be written to an accuracy of two decimal places, using function two decimal places:

```
def two_decimal_places(x):
    """ Function returns a string which contains a record of the decimal
    number, written to an accuracy of two decimal places. """
    return '{0:.2f}'.format(x)
```

Output should be as follows:

- o ITM<18.5: You are underweight.
- o 18.5≤ITM<25: You have normal weight.
- o 25≤ITM<30: You are overweight.
- o 30≤ITM: You are obese.

Body mass index

Indiana Jones


```
2 # Minmax 1
 3 #
 4# Find the max and min values of a function $ax^2 + bx + c$ an a closed interval.
    1. part
 7 # Write a function minmax(a, b, c, d, e) that returns min value $m$ and max
 8 # value $M$ of the function $ax^2 + bx + c$ an a closed interval $[d, e]$.
 9 # Values must be returned as a tuple $(m, M)$.
10 #
11 # Example:
12 #
13 # >>> minmax(1, 0, 1, -1, 1)
14#
     (1, 2)
     >>> minmax<mark>(</mark>1, 0, 1, 1, 2<mark>)</mark>
15 #
      (2, 5)
16 #
18
19 import numpy
20
21 def minmax(a, b, c, d, e):
       def f(x):
22
           return a*numpy.square(x) + b*x + c
23
      values = [f(d), f(e)]
24
25
       return (min(values), max(values))
26
```

Console 🥏 Python 1 🔣 IP: Kernel 1 区 ■ temp.py 区 >>> runfile('C:/Users/gregor/Desktop/cadgme/minmax 1.py ', wdir='C:/Users/gregor/Desktop/cadgme') Saving solutions to the server... success. Part 1 has no valid solution. - For values (1, 0, 1, -1, 1) the min value is not 2. Did you consider value at the vertex of the parabola? Expression minmax(1, 0, 1, -1, 1) returns (2, 2) in stead of (1, 2).

```
19 import numpy
   21 def minmax(a, b, c, d, e):
         def f(x):
          return a*numpy.square(x) + b*x + c
   24
       points = [d, e]
       vertex x = -b / (2*a)
   25
   26
        if d <= vertex x and vertex x <= e:
   27
             points.append(vertex x)
        values = [f(point) for point in points]
   28
   29
         return (min(values), max(values))
   30
Console
    🦆 Python 1 🔣
                IP: Kernel 1
                           temp.py 🗵
>>> runfile('C:/Users/gregor/Desktop/cadgme/minmax_l.py', wdir='C:/Users/gregor/Desktop/cadgme')
Saving solutions to the server... success.
Part I has a valid solution.
>>>
```

Minmax 1

Solutions

Find the max and min values of a function $ax^2 + bx + c$ an a closed interval.

1. part

Write a function minmax(a, b, c, d, e) that returns min value m and max value M of the function $ax^2 + bx + c$ an a closed interval [d, e]. Values must be returned as a tuple (m, M).

Example:

```
>>> minmax(1, 0, 1, -1, 1)
(1, 2)
>>> minmax(1, 0, 1, 1, 2)
(2, 5)
```

Minmax 1

Square root

Matrix prod

Product of €

Product of €

Fahrenheit 1

Fahrenheit 1

Minmax 1

Simple problems

1. part

Your solution

```
import numpy

def minmax(a, b, c, d, e):
    def f(x):
        return a*numpy.square(x) + b*x + c
    points = [d, e]
    vertex_x = -b / (2*a)
    if d <= vertex_x and vertex_x <= e:
        points.append(vertex_x)
    values = [f(point) for point in points]
    return (min(values), max(values))</pre>
```

Official solution

```
def minmax(a, b, c, d, e):
    # Store the x-coordinates of the candidates in the array.
    candidates_x = [d, e, -b/(2*a)]
    # Filter them out so that they lie on the interval [e, f]
    candidates_x = [c for c in candidates_x if c<=e and c>=d]
    # Compute function values at this points
    values = [a*x**2 + b*x + c for x in candidates_x]
    return (min(values), max(values))
```

Tomo: teachers perspective

- List of courses are available
- •Editing options in classes taught by the teacher
- •Easily tracks student progress
- Can add/edit problem sets / exercises

CADGME 2016

0% octave

20% Workshop

0% Excercise 14

Računalništvo 1

14% Požrešna metoda

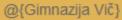
38% Iskanje z bisekcijo

27% Deli in vladaj

Drugi koraki v Python

Matija Lokar, UROŠ VAUPOTIČ

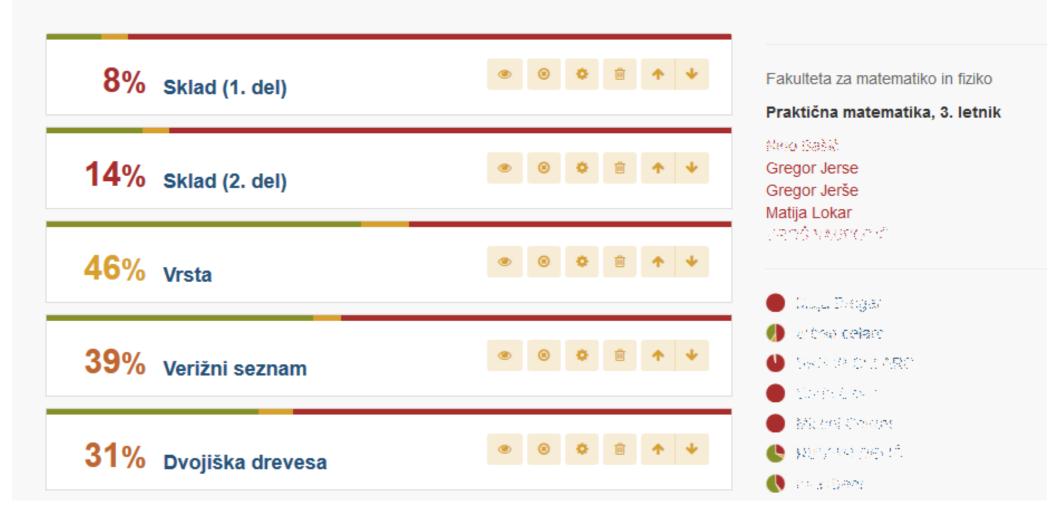
@{Fakulteta za matematiko in


Andrej Brodnik, Valentin Kragelj, VALENTIN KRAGELJ

@{Gimnazija Vič}

Informatika

Klemen Bajec



Računalništvo 1

Sklad (2. del)

RPN kalkulator

Ko z enostavnim kalkulatorjem želimo izračunati malo zapletenejši račun, vedno nastanejo težave z zapisom oklepajev. Izkaže pa se, da se lahko uporabi oklepajev v celoti izognemo z obrnjenim poljskim zapisom (reverse Polish notation oz. na krajše RPN).

V tem zapisu operacij ne pišemo med argumenti, temveč za njimi. Tako namesto 4 + 5 pišemo 4 5 + . Če želimo izračunati (2 + 4) * 3, pa napišemo 2 4 + 3 * . Ko napišemo 2 4 + , je to isto, kot če bi napisali 6, in ko temu dodamo še 3 * , dobimo iskani rezultat 18 .

V splošnem števila dajemo na sklad, z operacijo pa s sklada vzamemo dve vrhnji števili, nanj pa vrnemo rezultat operacije.

Implementacijo razreda Sklad lahko dobite tukaj.

RPN kalkulator

Seznam skladov

Gnezdenje oklepajev

Matrično množenje

Vlak

-					
•	r	•			-
•	,		-	и.	•
			•		-

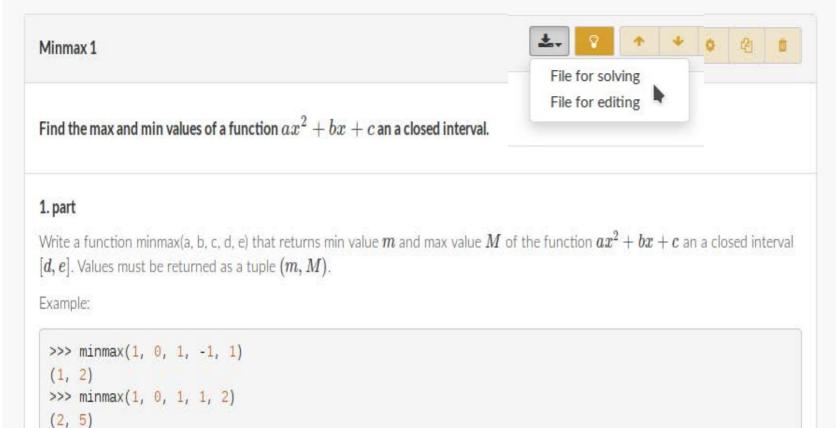
Delo z vrsto	•••••
Zavetišče	
Vrsta z dvema skladoma	
Sladoled	
Družabna vrsta	

Verižni seznam

Vozel	000000000
Še o vozlih	000000000
Izštevanka	
Urejanje verižnih seznamov	

×

Cancel


+ Add new problem

Simple problems

Simple problems

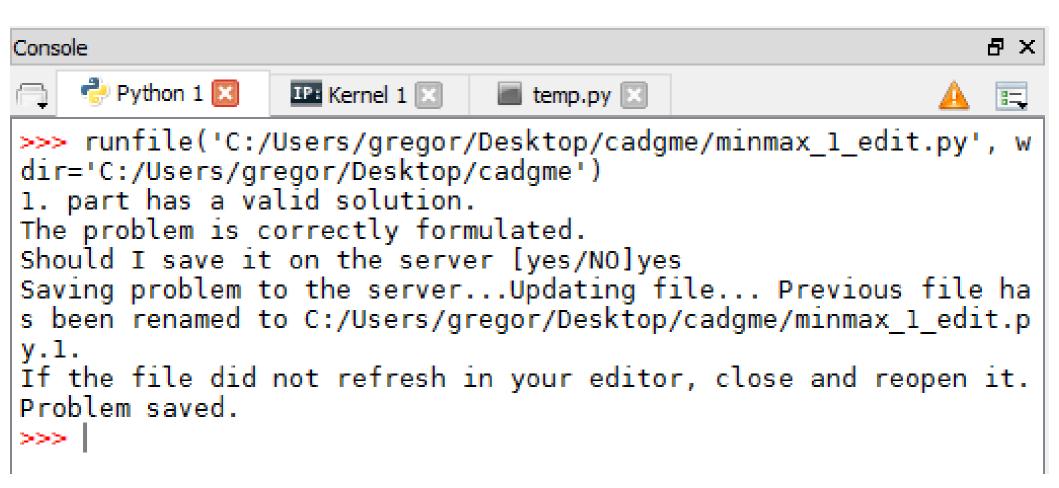
Minmax 1

Square root

Matrix product

Product of eigenvalues

Product of eigenvalues


Fahrenheit to Celsius

Fahrenheit to Celsius

```
with open(__file__, encoding='utf-8') as f:
    source = f.read()
exec(source[source.find("# =L=I=B=""R=A=R=Y=@="):])
problem = extract problem( file )
Check.initialize(problem['parts'])
 Minmax 1
# Find the max and min values of a function $ax^2 + bx + c$ an a closed interval.
                                                                     ===@002828=
# Write a function minmax(a, b, c, d, e) that returns min value $m$ and max
# value $M$ of the function $ax^2 + bx + c$ an a closed interval $[d, e]$.
# Values must be returned as a tuple $(m, M)$.
 Example:
      >>> minmax(1, 0, 1, -1, 1)
     (1, 2)
      >>> minmax(1, 0, 1, 1, 2)
      (2, 5)
def minmax(a, b, c, d, e):
    # Store the x-coordinates of the candidates in the array.
    candidates x = [d, e, -b/(2*a)]
    # Filter them out so that they lie on the interval [e, f]
    candidates x = [c for c in candidates x if c<=e and c>=d]
    # Compute function values at this points
    values = [a*x**2 + b*x + c for x in candidates_x]
    return (min(values), max(values))
```

```
def minmax(a, b, c, d, e):
    # Store the x-coordinates of the candidates in the array.
    candidates x = [d, e, -b/(2*a)]
    # Filter them out so that they lie on the interval [e, f]
    candidates x = [c for c in candidates x if c<=e and c>=d]
    # Compute function values at this points
    values = [a*x**2 + b*x + c for x in candidates x]
    return (min(values), max(values))
Check.part()
(m, M) = minmax(1, 0, 1, -1, 1)
if M == 1:
    Check.error(("For values {0} the max value is not 1. "
                 "Did you consider the endpoints of the interval?"),
                (1, 0, 1, -1, 1),
if m != 1:
    Check.error(("For values {0} the min value is not {1}."
                 "Did you consider value at the vertex of the parabola?"),
                (1, 0, 1, -1, 1), m)
Check.equal('minmax(1, 0, 1, -1, 1)', (1, 2))
```



```
minmax 1 edit.m
   10 # NE BRISI prvih vrstic
   11
   12 # ===
  13 # Minmax 1
   14 #
  15 # Find the max and min values of a function $ax^2 + bx + c$.
   =============@002831=
  17 # Write a function minmax(a, b, c, d, e) that returns min value $m$ and max
  18 # value $M$ of the function
  19 # $ax^2 + bx + c$ an a closed interval $[d, e]$.
  20 # Values must be returned as a vector $[m; M]$.
   21 #
  22 # Example:
   23 #
  24 #
            octave> minmax(1, 0, 1, -1, 1)
  25 #
         (1, 2)
   26 #
            octave> minmax(1, 0, 1, 1, 2)
   27
            (2, 5)
   28
  29 Fifunction mM = minmax(a, b, c, d, e)
          candidates_x = [d; e];
  30
  31
          vertex_x = -b/(2*a);
  32
          if (vertex_x >= d && vertex_x <= e)</pre>
  33
               candidates_x = [candidates x; vertex x];
          endif
  34
   35
          # Compute function values at this points
          values = [a*candidates_x.*candidates_x + b*candidates_x + c]
  36
  37
          mM = [min(values); max(values)]
```

check_error('For values (1, 0, 1, -1, 1) the max value is not 1. Did you consider the endpoints

endfunction

check_part()

M = ret(2);

42 m = ret(1);

44 Fif (M == 1)

41 ret = minmax(1, 0, 1, -1, 1);

38

40

43

```
minmax 1 edit.m
   10 # NE BRISI prvih vrstic
   11
   12 # ==
   13 # Minmax 1
   14 #
   15 # Find the max and min values of a function $ax^2 + bx + c$.
   16 # ==============
   17 # Write a function minmax(a, b, c, d, e) that returns min value $m$ and max
   18 # value $M$ of the function
   19 # $ax^2 + bx + c$ an a closed interval $[d, e]$.
   20 # Values must be returned as a vector $[m; M]$.
   21
   22
       >> minmax 1 edit
   23
   24
   25
       ans = 1
   26
       The problem in correctly formulated. Should I save it on the server? (yes/no)
   27
   28
  29 -
        Command Window
                             Editor
                                       Documentation
   30
   31
  32
          if (vertex_x >= d && vertex_x <= e)</pre>
   33
               candidates_x = [candidates x; vertex x];
          endif
   34
          # Compute function values at this points
   35
          values = [a*candidates_x.*candidates_x + b*candidates_x + c]
   36
          mM = [min(values); max(values)]
   37
       endfunction
   38
   39
      check_part()
   40
  41 ret = minmax(1, 0, 1, -1, 1);
      m = ret(1);
  42
      M = ret(2);
   43
  44 - if (M == 1)
          check_error('For values (1, 0, 1, -1, 1) the max value is not 1. Did you consider the endpoints
```

Tomo: feedback

- Included inside test cases
- •Test cases are programs written in the chosen language
- •Test cases can be arbitrarily complex
- •There is class Check (in Python3) that simplifies common tasks
- •Students' source code is available for inspection in the test program

```
20 from numpy.linalg import eigvals
21 from numpy import prod
22
23 def product of eigenvalues(A):
   eigs = eigvals(A)
24
      return prod(eigs)
25
26
27 Check.part()
28
29 import ast
30 tree = ast.parse(Check.current_part['solution'])
31 for node in ast.walk(tree):
      if isinstance(node, ast.Call):
32
          name = node.func.id
33
34
          if name == 'det':
35
               Check.error('det function should not be used')
36
37 Check.equal('float(product of eigenvalues([[1, 0], [0, 1]]))', 1)
38 Check.equal('float(product_of_eigenvalues([[-1, 3], [2, 1]]))', -7)
39 Check.secret(product of eigenvalues([[2, 1], [0, 1]]))
40
```

Projekt Tomo

- Open Source
- •Code is available on GitHub
- •https://github.com/matijapretnar/projekt-tomo